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Extensive Monte-Carlo simulations are performed to analyze a recent neutron-diffraction experiment on a
distorted triangular lattice compound RbCoBr3. We consider a spin-lattice model where both spin and lattice
are Ising variables. This model explains well successive magnetic and dielectric transitions observed in the
experiment. The exchange interaction parameters and the spin-lattice coupling are estimated. It is found that
the spin-lattice coupling is important to explain the slow growth of a ferrimagnetic order. The present simu-
lations were made possible by developing a modified Monte-Carlo algorithm, which accelerates slow Monte-
Carlo dynamics of quasi-one-dimensional frustrated systems.
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I. INTRODUCTION

Frustrated magnets have been attracting much interest for
many decades.1 The ordinary magnetic order is destroyed
and the ground state may remain disordered or turn into an
exotic state. The ground state of a frustrated system is usu-
ally unstable against a small perturbation. The system man-
ages to find a way to relax frustration and change the state.
We may design and control material functions using the frus-
tration effects.

The ABX3-type compounds are well-known frustrated
magnets. The lattice structure is the stacked triangular lattice.
There is frustration when the nearest-neighbor interactions
are antiferromagnetic. Successive magnetic phase transitions
occur because of the strong frustration when the spins have
the Ising anisotropy.2,3 The low-temperature magnetic struc-
ture is the ferrimagnetic state. There exists a partially disor-
dered �PD� phase between the paramagnetic phase and the
ferrimagnetic phase. In the PD phase, one of the three sub-
lattices is completely disordered, while the other two sublat-
tices take antiferromagnetic configurations. There is no struc-
tural phase transition in most compounds. The system
remains fully frustrated down to the lowest temperature.

The KNiCl3-family compounds are exceptional in that
they exhibit structural phase transitions.4–6 We can observe
the structural phase transitions by the dielectric measure-
ments because each BX3 chain has a negative charge. These
compounds have both magnetic and dielectric characteris-
tics: we call them the magnetodielectric compounds. The
magnetic phase transitions and the structural �dielectric�
phase transitions usually occur at different temperatures.
However, Morishita et al.7,8 found that both transitions occur
at the same temperature in RbCoBr3. It is a very rare case
among the KNiCl3-family compounds. Magnetic and dielec-
tric measurements9,10 found that the phase transitions in
RbCoBr3 are quite unusual in the following points compared
to other compounds:

�i� The dielectric transition temperature of 37 K of
RbCoBr3 is very low compared to other compounds for
which the transition takes place around the room tempera-
tures. The energy scale of the structural �dielectric� system in
RbCoBr3 seems to be suppressed somehow.

�ii� The temperature dependence of the dielectric constant
does not exhibit a diverging behavior. This is clearly differ-
ent from another KNiCl3-family compound RbFeBr3, which
exhibits sharp divergence at the transition temperature of
34.4 K.6

�iii� The increase in the spontaneous polarization below
the dielectric transition temperature is very slow while that
of RbFeBr3 is very sharp.

�iv� The magnetic PD phase appears in a very narrow
temperature region. The first neutron measurement suggested
that it might disappear.9 A recent improved neutron
experiment11 made it clear that it exists between 31 and 37
K. This is also a clear difference from other compounds such
as CsCoBr3 �Ref. 2� and CsCoCl3.3

�v� The growth of the ferrimagnetic order is very slow.
The neutron count increases linearly with the temperature
decrease in the low-temperature phase.

These characteristic behaviors suggest that there is an un-
known mechanism of interplay between the magnetic system
and the dielectric system in RbCoBr3.

The aim of this paper is to propose a proper theoretical
model that quantitatively explains the experimental results of
RbCoBr3. A well-known theoretical model for the ABX3
compounds is the antiferromagnetic spin system on the
stacked triangular lattice.12–16 However, the ordinary spin
model without a coupling to the dielectric system is not suf-
ficient to explain RbCoBr3. The chain-mean-field theory12

gives the magnitude of the second-nearest-neighbor mag-
netic interactions on the c plane �J2��1 K, which is compa-
rable to that of the nearest-neighbor interactions �J1�
�2.5 K.8 This is not acceptable from the experimental point
of view.

In the present paper, we use the spin-lattice model pro-
posed by Shirahata and Nakamura.17 This model showed that
the PD phase may disappear because of the relaxation of
frustration by the lattice distortion; each of the spin system
and the lattice system relaxes frustration of the other. A
single transition may occur from a paramagnetic and
paraelectric phase to the ground-state phase without experi-
encing the intermediate PD phase. Shirahata and Nakamura
also noticed that the cooperation between the spin system
and the lattice system works only when the energy scale of
the lattice system is comparable to that of the spin system.
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In this paper, we refine the above spin-lattice model. We
find that a soft lattice system coupled with a spin system
explains the interesting material RbCoBr3. We thereby
clarify the origin of the characteristic behaviors of this com-
pound. For the purpose, we develop a modified Monte-Carlo
�MC� algorithm that eliminates slow MC dynamics in quasi-
one-dimensional frustrated spin systems. We have performed
extensive MC simulations and determined various physical
parameters. We explain our model Hamiltonian in Sec. II.
The numerical method is explained in Sec. III and the results
are presented in Sec. IV. Discussions are given in Sec. V.

II. THEORETICAL MODEL

A. Structure of ABX3 compounds

The lattice structure of ABX3-type compounds is the
stacked triangular lattice. Face-sharing BX6 octahedra run
along the c axis forming a BX3 chain. Magnetic B2+ ions
form an equilateral triangular lattice on the c plane, which
causes frustration. Exchange interactions along the BX3
chains Jc are antiferromagnetic. The magnitude of Jc is much
larger than that of the nearest-neighbor interactions J1 on the
c plane: �Jc�� �J1�. Therefore, this spin system can be consid-
ered as a quasi-one-dimensional system with frustration on
the c plane.

The typical lattice structure of ABX3-type compounds at
high temperatures is shown in Fig. 1�a�. The space group is
P63 /mmc. Magnetic ions forming an equilateral triangular
lattice sit on a level plane. This structure remains down to the
lowest temperature in most compounds. In the KNiCl3 fam-
ily, the structural phase transitions occur as we decrease the
temperature. Each BX3 chain shifts upward or downward

keeping the relative distance between the atoms. One of the
lattice structures after the structural phase transitions is
shown in Fig. 1�b�, where two sublattices on the triangular
lattice shift upward with the same amount while one sublat-
tice shifts downward. The space group is P63cm. It is the
ferrielectric structure of KNiCl3 observed at room
temperatures.4 We refer to this structure as “lattice-Ferri” or
“↑-↑ -↓” in this paper. Another possible structure is a con-
figuration with one sublattice shifting upward, one shifting
downward, and the third unchanged as shown in Fig. 1�c�.
The space group is P3̄c1. We refer to this structure as
“lattice-PD” or “↑-↓ -0” in this paper. Nishiwaki and
Todoroki18 discussed the appearance of the three-sublattice
ferrielectric state in RbCoBr3 using the mean-field approxi-
mation. It is a structure with the ↑-↑ -↓ configuration but the
amount of displacement in each sublattice is different from
the others as shown in Fig. 1�d�. The space group is P3c1.
We refer to this structure as “three-sublattice lattice-Ferri” in
order to distinguish from the lattice-Ferri structure of Fig.
1�b�, which has the two-sublattice order.

B. Spin-lattice model

We consider a model on the stacked triangular lattice with
spin and lattice degrees of freedom.17 The size in the a and b
directions is L, while the size in the c direction is Lc. There
are a spin variable Sij and a lattice variable �ij at each site.
Here, the subscript i denotes the position in the c axis, while
j denotes the position on the c plane. We define each spin as
an Ising variable Sij = �1 /2 because Co ions have an Ising
anisotropy.

The lattice variable �ij denotes the displacement from the
symmetric lattice point along the c axis. We approximate the

(b)(a) (c) (d)

FIG. 1. Typical crystal structures of ABX3-type compounds. A-ions are omitted. Black circles depict magnetic B2+ ions and gray circles
depict X− ions. Each arrow depicts the shift direction of a chain. �a� A symmetric structure at high temperatures. The space group is
P63 /mmc. �b� A room-temperature KNiCl3 structure. The space group is P63cm. We call this structure “lattice-Ferri.” �c� A low-temperature

structure. The space group is P3̄c1. We call this structure “lattice-PD.” �d� Another low-temperature structure. The space group is P3c1. We
call this structure a “three-sublattice lattice-Ferri.” Each sublattice polarization takes a different value.
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displacement with the Ising variable as �ij = �1 /2; each ion
shifts either upward ��ij =1 /2� or downward ��ij =−1 /2�.
The reason of approximating the present lattice system with
the Ising variables is as follows. The symmetric lattice struc-
ture with zero displacement as shown in Fig. 1�a�
�P63 /mmc� appears at high temperatures. Structural phase
transitions occur successively as the temperature decreases.
The lattice configuration is the ↑-↓ -0 state �Fig. 1�c�� in the
intermediate phase and the ↑-↑ -↓ state �Fig. 1�b�� in the
low-temperature phase. This is analogous to the successive
magnetic phase transitions from the paramagnetic phase to
the PD phase and to the ferrimagnetic phase in the Ising
model on the stacked triangular lattice. In the previous
paper,17 we considered a lattice variable taking three states
+1,0 ,−1. Here, we omit a state �ij =0. The �ij =0 state can
be represented by a mixture of the �ij =1 /2 state and the
�ij =−1 /2 state. A chain shift is the sum of the ion displace-
ments along the chain in the experiment.

The Hamiltonian consists of the lattice part HL and the
spin part HS:

H = HL + HS, �1�

where

HL = − 2Jc
L�

i,j
�ij��i+1�j − 2J1

L�
i

�
�jk	

n.n.

�ij�ik

− 2J2
L�

i
�
�jk	

n.n.n.

�ij�ik, �2�

HS = − 2Jc
S�

i,j
SijS�i+1�j − 2J1

S�
i

�
�jk	

n.n.

�1 − ���ij − �ik�2�SijSik

− 2J2
S�

i
�
�jk	

n.n.n.

�1 − ���ij − �ik�2�SijSik. �3�

The lattice part comes from the elastic energy: ��ij −�i�j��
2.

The spring constant is denoted by J�c,1,2�
L , where each of

�c ,1 ,2� denotes a direction of the interaction: c denotes the c
axis, 1 denotes the nearest-neighbor �n.n.� pairs on the
c-plane, and 2 denotes the next-nearest-neighbor �n.n.n.� one
on the c plane. The sign of the spring constant is determined
based on the effect of the exclusion volume effect. It is posi-
tive along the c axis: Jc

L�0. An ion pushes the next ion in the
same direction. The spring constant for the nearest pairs in
the c plane should be negative: J1

L�0. An ion shifts upward
if the neighboring ion shifts downward because ions try to
stay away from the neighboring ions. Therefore, there is
frustration in the triangular lattice. We choose J2

L to be posi-
tive in order to realize the ↑-↑ -↓ state observed experimen-
tally at low temperatures.

The main idea of this paper is to make the spin-spin ex-
change integrals depend on the lattice variables. We assume
that the interaction becomes weak if the exchange path is
distorted. Thus, the in-plane exchange interaction becomes
�1−�� times weaker if �ij and �ik have opposite signs. We

use the same value of � for J1
S and J2

S for simplicity. The
exchange path along the c axis is rigid against the ion shift
and hence we assume Jc

S to be unaffected.
We assume that the nearest-neighbor spin-spin interaction

is antiferromagnetic �J1
S�0� and the next-nearest-neighbor

interaction is ferromagnetic �J2
S�0� in order to realize the

ferrimagnetic state in the ground state. The interactions along
the c axis in the real compound are antiferromagnetic
�Jc

S�0�.
The lattice part and the spin part of the Hamiltonian have

the same form of the antiferromagnetic Ising model on the
stacked triangular lattice. They are connected by the � term
of the form −4J1,2

S ��ij�ikSijSik. Thus, the present model can
be regarded as the Ashkin-Teller model.19

Experimental estimates of the exchange integrals were
Jc

S�−62 K, J1
S�−2.5 K, and J2

S�1 K.8 The estimate of Jc
S

was obtained from the position of the broad maximum peak
of 	
. We consider it underestimated, which we will discuss
in Sec. IV.

C. Relaxation of frustration by lattice distortion

Here, we consider how the ordered magnetic state is fa-
vored by the lattice distortion in the present spin-lattice
model. When the lattice takes the lattice-Ferri �↑-↑ -↓� con-
figuration, the PD state of the spin system is favored mag-
netically. As shown in Fig. 2�a�, the nearest-neighbor inter-
actions between two ↑-shifted sublattices remain strong
�depicted in the figure by thick lines�, while those between
an ↑-shifted sublattice and a ↓-shifted sublattice are weak-
ened by the � term. The strong bonds form a honeycomb
lattice where the spins are ordered antiferromagnetically. The
remaining spins on the ↓-shifted sublattice interact with the
spins on the honeycomb lattice through weak bonds. The

(b)

(a)

FIG. 2. �Color online� Relaxation of frustration by the lattice
distortion. Red �solid� circles depict c chains shifting upward. Blue
�gray� circles depict c chains shifting downward. Open �white�
circles depict c chains not shifting. Thin �thick� lines depict weak
�strong� interactions. �a� When the lattice is deformed to a lattice-
Ferri �↑-↑ -↓� pattern, the spin-PD state is favored. �b� When the
lattice is deformed to a lattice-PD �↑-↓ -0� pattern, the spin-Ferri
state is favored.
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molecular field on the ↓-shifted sublattice from the ↑-shifted
sublattices vanishes because of the antiferromagnetic order-
ing on the ↑-shifted sublattices. Then, the spins on the
↓-shifted sublattice may be disordered. We call the PD state
of the spin system as “spin-PD” in this paper.

The similar argument is possible when the lattice system
takes the lattice-PD �↑-↓ -0� state as shown in Fig. 2�b�. The
ferrimagnetic spin state is favored in this case. The nearest-
neighbor interactions between an ↑�↓�-shifted sublattice and
a 0-shifted sublattice are weakened by � /4, while those be-
tween the ↑-shifted sublattice and the ↓-shifted sublattice are
weakened by �. The antiferromagnetic ordering is realized
on the stronger bonds, which is the ferrimagnetic state. We
call it in this paper “spin-Ferri.” The present mechanism was
discussed by Plumer et al.,20 when the lattice distortion is
static.

III. MONTE-CARLO METHOD

A. Axial-bond-cluster flip algorithm

We briefly explain our modified Monte-Carlo simulation
algorithm. The detail will be reported elsewhere.21

The origin of the slow MC dynamics in the quasi-one-
dimensional ��Jc�� �J1�� Ising system is a very long correla-
tion length along the c axis. It rapidly grows at low tempera-
tures as 
c�exp��Jc� /T�. A large magnetic domain along the
c axis is not flipped by the standard single-spin-flip algo-
rithm. Koseki and Matsubara22 introduced a cluster-heat-bath
algorithm in order to solve this problem but it costs a long
CPU time. The possible size of simulations is restricted to
�Jc /J1�=10, N=36�36�360, and 2�106 MC steps.23

Here, we solve this problem using the loop algorithm of
quantum Monte-Carlo �QMC� simulations.24 In the QMC
simulation, a d-dimensional quantum spin system is mapped
to a �d+1�-dimensional classical spin system25 before actual
simulations. The additional dimension is called the Trotter
direction. Then, the classical spin system for the QMC algo-
rithm can be interpreted as a stacked Ising model. The Trot-
ter direction of the QMC system is now the c axis of the
stacked Ising model, and the real-space directions of the
QMC system are the c-plane of the stacked Ising model. The
loop algorithm of the QMC simulation24 is to flip a “loop” or
an axial aligned-spin cluster along the Trotter direction in the
QMC system. Therefore, the algorithm can be readily ap-
plied to flip a correlated spin cluster along the c axis of the
stacked Ising system.

The size of the cluster is a stochastic variable in each
update of the cluster algorithm. Using a proper probability
we generate locations of the cluster edges, which are memo-
rized in the computer array. Then, we calculate the sum of
molecular fields from other spins to the cluster between two
neighboring edges �two arrows in Fig. 3�. The cluster is
flipped using the heat-bath probability by this molecular
field.

We noticed that the required computational procedures
and the amount of computer memory are independent of the
correlation length 
c. We do not need to memorize spin states
of all sites. Locations of the cluster edges and the spin state
at each chain edge are stored and utilized in the simulation.

The linear size along the c axis Lc is set to 
c times larger
than L. The system with L2�
cL spins is simulated with an
effort of L3. The modified algorithm becomes exponentially
efficient at low temperatures. In this paper, we set L=104 for
all data. An effective spin number at low temperatures ex-
ceeds 108. The periodic boundary conditions are imposed on
the lattice.

B. Observables

We observe in the present MC simulations the following
physical quantities: the sublattice order parameters, one-
third-structure factors, one-structure factors, and the uniform
magnetic susceptibility. The sublattice order parameters are
the sublattice polarization m�

L and the sublattice magnetiza-
tion m�

S , respectively. They are defined as

m�
L =

1

Nsub
�

i
�
j��

�ij , �4�

m�
S =

1

Nsub
�

i

�− 1�i�
j��

Sij , �5�

where �= ,� ,� denotes one of three sublattices in the tri-
angular lattice and Nsub�N /3.

The following structure factors are defined in order to
detect phase transitions and to compare with the neutron ex-
perimental data:

�f1/3
L �2 =

1

8 �
�=,�,�

�m�
L − m�+1

L �2� , �6�

�f1/3
S �2 =

1

8 �
�=,�,�

�m�
S − m�+1

S �2� , �7�

�f1
L�2 = ��m

L + m�
L + m�

L�2	 , �8�

�f1
S�2 = ��m

S + m�
S + m�

S�2	 . �9�

The one-third-structure factor takes a finite value when the
ferrimagnetic state or the PD state is realized. It detects the
phase transition between the PD phase and the paramagnetic

i i

FIG. 3. A schematic of the MC updating procedure. A cluster in
an i chain is defined between two edge arrows. It is flipped using
the sum of molecular fields from other chains.
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phase. The phase transition between the PD phase and the
ferrimagnetic phase is detected by f1.

C. Mean-field-like treatment of MC update

In the present simulation, spin variables and lattice vari-
ables are updated separately and alternatively. In the calcu-
lation of the heat-bath update probability, we use the follow-
ing approximation to simplify the simulation. For an update
of a spin variable Sij, we calculated the four-body energy
−4J1,2

S ��ij�ikSijSik by replacing the lattice variable �ij with a
mean value �̄ j ��i=1

Lc �ij /Lc, namely, as −4J1,2
S ���̄ j�̄k�SijSik.

For an update of a lattice variable �ij, we replaced the spin
variable with a mean value S̄j ��i=1

Lc Sij /Lc, namely, as
−4J1,2

S ��S̄jS̄k��ij�ik.
This mean-field treatment may be justified by the follow-

ing argument. In a cluster updating procedure, the sum of the
molecular field to a cluster is calculated to estimate the up-
dating probability. Since the cluster size �exp��Jc

S,L� /T� is
very large around/below the critical temperature, the mean
over a cluster can be approximated by the mean over the
whole chain.

The above mean-field treatment possibly influences the
critical properties of the phase transitions. Since our main
purpose here is to explain the experimental results, most of
the simulations are carried out in the off-critical regions.
Therefore, we consider that this mean-field treatment does
not affect our numerical results in the present paper. The
investigations on the critical properties are left for future
study.

D. Simulation conditions

The choice of the initial state is important in the present
simulation. Since each of the lattice system and the spin
system exhibit two successive transitions, we have several
possible combinations of ordering patterns as we change the
temperature. We therefore used the mixed phase
initialization,26–28 where we prepared several initial spin-
lattice states and spatially mixed them. For example, we start
the simulation with the following initial state when the tem-
perature is near the spin-PD transition temperature. The lat-
tice system above this temperature takes the lattice-PD
�↑-↓ -0� state. Because the spin-PD state favors the lattice-
Ferri �↑-↑ -↓� state �Fig. 2�a��, they may appear at the same
temperature. Therefore, a half of the system is set to the
spin-PD state and the lattice-Ferri state, while the other half
is set to the spin-paramagnetic state and the lattice-PD state.
The former one appears below the transition temperature,
while the latter appears above it. We tried other choices of
mixed states and verified the equilibration.

The typical number of initialization MC steps was 1000
and that of total MC steps was 10 000. It is sufficient except
for the vicinity of the transition temperature. We performed
30 independent MC runs and took the average over these
runs.

IV. RESULTS

A. Requirements from the experiments

Experimental findings are listed in the following. They
should be reproduced by the simulations.

�i� The uniform magnetic susceptibility shows a broad
peak at T=100 K.10

�ii� The dielectric constant shows a small anomaly at T
=90 K �Refs. 7 and 10� where the lattice-PD �↑-↓ -0� state is
considered to appear.

�iii� As the temperature decreases from the room tempera-
ture, the first magnetic phase transition occurs at TN1

=37 K. The neutron-scattering data of � 1
3

1
31�, which corre-

sponds to �f1/3
S �2 of Eq. �7�, show a rapid increase below this

temperature, while those of �111�, which corresponds to �f1
S�2

of Eq. �9�, remains zero. The spin-PD state is considered to
appear at this temperature.

�iv� The dielectric constant increases below TN1=37 K.
The lattice-Ferri �↑-↑ -↓� state is considered to appear.7,10

�v� The neutron-scattering data of �111� begin to increase
at TN2=31 K. It is considered as the second magnetic phase
transition as the temperature decreases from the room tem-
perature. The temperature dependence of the �111� data is
linear with T.11

�vi� All the neutron data saturate at T=17 K, below
which the magnetic order seems to be perfect.11

�vii� The dielectric constant also shows an anomaly at 32
K.10 The temperature is very close to TN2. It is not known
whether it is another structural phase transition or not.

The above experimental evidences are summarized in Fig.
4.

Requirement �i� determines the energy scale of Jc
S, re-

quirement �vi� determines J2
S, requirement �iii� �TN1� deter-

mines the ratio J2
S /J1

S,12,21 and requirement �ii� determines the
ratio J2

L /J1
L. The other parameters are determined by the tem-

perature dependence of the structure factor between 20 and
37 K.

B. Spin-lattice model

Numerical results are shown in Fig. 5. The seven param-
eters are determined in order to fit the neutron data by visual
inspection. The spin parameters are uniquely determined as

Jc
S = − 97 K, J1

S = − 2.4 K, J2
S = 0.14 K. �10�

Those for the lattice system were not uniquely determined.
There are several choices that reproduce the experimental
results. We present two choices of the lattice parameters in
this paper. Other possible parameter choices range between
these two estimates. They are

Jc
L = 73 K, J1

L = − 49 K, J2
L = 0.38 K, � = 0.20,

�11�

and

0 T

spin

lattice
90 [K]3731-32

ParaPDFerri

PD ParaFerri(I)Ferri(II)

17

saturated(magnetic)

(dielectric)

FIG. 4. A phase diagram of RbCoBr3. Solid lines show the
known phase-transition temperatures. A broken line at 32 K is an-
other structural transition found in this paper.
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Jc
L = 61 K, J1

L = − 57 K, J2
L = 0.61 K, � = 0.24.

�12�

Both parameter choices reproduce the neutron data and the
susceptibility data fine. Quality of the fitting is the same
within the visual inspection. These parameters reproduce the
susceptibility data from 20 to 140 K, including a convex
change at 37 K. The intermediate phase between 31 and 37 K
is identified as the spin-PD phase because the nonequilib-
rium relaxation data in Fig. 6 exhibits that f1

S disappears ex-
ponentially.

We cannot uniquely determine the lattice parameters be-
cause of lack of information that determines Jc

L. In the
present lattice system, there is no observable corresponding
to the magnetic susceptibility that determines Jc

S. For each
choice of Jc

L, we can find J1
L, J2

L, and � in order to satisfy the
experimental data. The ratio Jc

S /Jc
L takes a value from 1.6 to

1.0, which agrees with the previous paper.17

We have observed the sublattice magnetization and the
sublattice polarization. Figs. 7�a� and 7�b� show the tempera-

ture dependence of the profiles. As shown in Fig. 7�b�, the
structural phase transition occurs at T�90 K. Below which
the lattice system takes the lattice-PD �↑-↓ -0� state. It repro-
duces the experimental requirement �ii� of Sec. IV A. The
spin system remains paramagnetic in this temperature region.
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FIG. 5. Results of the spin-lattice model. The lattice parameters
are set to the values in Eq. �11�. �a� The MC data of the structure
factor are compared with the neutron experimental data �Ref. 11�.
The MC data of �f1

S�2 are multiplied to coincide with the experi-
mental data of �111�. Those of �f1/3

S �2 are multiplied to coincide with
the experimental data of � 1

3
1
31� and � 2

3
2
31�. �b� The MC data of the

uniform magnetic susceptibility are compared with the experimen-
tal data �Ref. 10�. The amplitudes of the simulation data and the
constant contribution from the nonmagnetic impurity are deter-
mined so that the maximum value and the minimum value agree
with the experimental data.
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FIG. 6. �Color online� A nonequilibrium relaxation plot of the
magnetic structure factor f1

S when the simulation starts from the
ferrimagnetically ordered state. The temperature is 35.5 K, just be-
low TN1=37 K. The relaxation function of the spin-only system
converges to a finite value, while that of the spin-lattice system
decays exponentially. The lattice parameters are those of Eq. �11�.
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The spin transition and the lattice transition occur near 37
K �Fig. 7�a��. They are not always simultaneous. When Jc

L is
set to 73 K, the spin transition occurs at 37.2 K, which is
slightly higher than the lattice transition temperature of 36.8
K. On the other hand, the lattice transition temperature be-
comes 38.5 K when Jc

L is set to 61 K, while the spin transi-
tion temperature remains the same. The experimental finding
of the simultaneous magnetodielectric phase transition at 37
K is an accidental coincidence. The two transitions may oc-
cur at slightly different temperatures.

In the case of Jc
L=73 K, a weak ferrimagnetic state ap-

pears at 37.2 K. This is because the lattice takes the
lattice-PD �↑-↓ -0� state at this temperature, and it favors the
spin-Ferri state �Fig. 2�b��. When the lattice transition occurs
at 36.8 K, the spin-Ferri state disappears and the spin-PD
state appears because the lattice-Ferri state favors the
spin-PD state �Fig. 2�a��. This is an outcome of the spin-
lattice coupling. The situation changes when Jc

L is set to 61
K. The lattice transition occurs at 38.5 K. Since the lattice
system takes the lattice-Ferri �↑-↑ -↓� state at 37.2 K, the
favored spin order is the spin-PD. The weak spin-Ferri state
does not appear in this case. This weak ferrimagnetic phase
is so narrow that it may not be observed in experiments if it
exists.

It is noticed that the spin transition temperature is robust
against the change in the lattice parameters. As far as we
observed in the MC simulations with several lattice-
parameter choices, the spin transition temperature from the
paramagnetic phase to the intermediate phase always occurs
at 37 K. The spin transition temperature seems to be deter-
mined by the spin parameters �10�. On the other hand, the
lattice system controls the type of the spin order at this tem-
perature.

In the intermediate phase, the amplitudes of two ↑-shifted
sublattice polarization and that of one ↓-shifted sublattice
polarization are different. The former one is not saturated,
while the latter is saturated. It is the two-sublattice lattice-
Ferri �↑-↑ -↓� state �Fig. 1�b��. An increase in the ↑-shifted
polarization is slow and almost linear with the decreasing
temperature.

The low-temperature magnetic transition occurs at 31 K.
Below which the ferrimagnetic state appears. Each sublattice
magnetization takes a different value. An inversion symme-
try between a spin-up sublattice and a spin-down sublattice is
broken. It is the three-sublattice ferrimagnetic state, which
was predicted to appear by the mean-field approximation.18

As the temperature decreases, the sublattice magnetizations
approach unity and the perfect ferrimagnetic order is realized
at temperatures near T=17 K. This saturation temperature
depends on J2

S.
The lattice transition always occurs at the low-

temperature magnetic transition temperature. It is the simul-
taneous spin-lattice phase transition. Above this spin-lattice
transition temperature, the lattice system takes the two-
sublattice lattice-Ferri state �Fig. 1�b��, which is the ground-
state configuration. When the spin-Ferri state appears below
the transition temperature, the lattice state is deformed to-
ward the lattice-PD �↑-↓ -0� state because the spin-Ferri state
favors the lattice-PD state. A combination of the partial
lattice-Ferri state and the partial lattice-PD state yields the

three-sublattice lattice-Ferri state �Fig. 1�d��. The space

group changes from P3̄c1 to P3c1. It is a clear evidence for
a strong correlation between the spin system and the lattice
system. The lattice system alone cannot make this structural
phase transition because the lattice system is in the ground-
state phase above the transition temperature. Therefore, this
may be the spin-lattice transition driven by the spin degrees
of freedom.

Figure 8 shows the MC results of the structure factor of
the lattice system. The f1/3-structure factor shows small
anomalies at 37 and 31 K. The temperature dependence be-
tween 37 and 31 K is slow and almost linear with T. The
f1-structure factor data qualitatively agree with the experi-
mental results of the spontaneous polarization.10 The data
show a decrease below 31 K because the lattice-Ferri state is
deformed toward the lattice-PD state by the ferrimagnetic
transition. In a real experiment,10 the spontaneous polariza-
tion shows a minimum at 23 K, while the minimum occurs at
28 K in the present simulation.

C. Spin-only model

We show that the spin-only system cannot explain all the
experimental data. The three parameters Jc

S, J1
S, and J2

S are
determined in order to fit the neutron experimental data fine
by visual inspection. Figure 9 shows the result. The estimates
are

Jc
S = − 77 K, J1

S = − 3.8 K, J2
S = 0.58 K.

Agreement with the neutron data is good, while the suscep-
tibility data disagree with the experiment significantly. If we
choose estimates that fit the susceptibility data, the neutron
data disagree in turn. We cannot find estimates that satisfy
both experimental data at the same time.

The MC data of the structure factor of �111� take very
small but finite values between 31 and 37 K as shown in Fig.
6. It suggests that the ferrimagnetic order is finite and the
intermediate spin-PD phase disappears. The direct transition
from the paramagnetic phase to the ferrimagnetic phase is an
outcome of a rather large estimate of J2

S.
The spin-only model does not consider the dielectric char-

acteristics of RbCoBr3. We cannot explain the successive
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structural phase transitions by this model. Using three pa-
rameters Jc

S, J1
S, and J2

S we only reproduce either the neutron
experimental data or the magnetic-susceptibility data. On the
other hand, the spin-lattice model explains quantitatively
both dielectric and magnetic properties using seven param-
eters. It suggests that the interplay between the spin system
and the lattice system is essential in this compound.

D. Perturbations

We consider perturbation effects to the present model. It is
intended to see how robust the characteristic behaviors of
RbCoBr3 are against perturbations as well as to propose fur-
ther experimental investigations. Here, we consider three
perturbations. The former two perturbations couple with the
lattice system, while the last one changes the spin-lattice
coupling parameter.

First, a lattice interaction parameter is changed in order to
make the lattice system hard. It corresponds to a pressure
effect. We increase the interaction �spring constant� along the

c axis Jc
L from 73 to 97 K, while the other parameters remain

the same as in Eq. �11�. Figure 10 shows the results. The
lattice transition to the two-sublattice ↑-↑ -↓ state occurs at
40 K �thin green lines in Fig. 10�b��, while it occurs at 37.2
K �thin green line in Fig. 7�a�� in the unperturbed case. The
magnetic transition occurs at 37.1 K �red and magenta lines
in Fig. 10�b�� and the PD state appears. This magnetic tran-
sition temperature is robust against the lattice perturbation.
The PD phase continues to the lower temperature and the
ferrimagnetic transition occurs at 24 K. We observe the small
bifurcation of the lattice profiles at this temperature. The
two-sublattice lattice-Ferri state is deformed very weakly to
the three-sublattice lattice-Ferri state. The simultaneous spin-
lattice transition also occurs in the perturbed system. The PD
phase becomes wider as in the typical ABX3 compounds.
Another clear difference from the original parameter set is
that the �111� structure factor is convex when it appears at 24
K, while the original one is linear.

Second, we changed J2
L from 0.38 to 0.75 K, while the

other parameters remain the same as in Eq. �11�. This pertur-
bation favors the lattice-Ferri �↑-↑ -↓� state. It may corre-
spond to applying the electric field to this compound. The
results of the spin system are the same as the case where we
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changed Jc
L. As shown in the figures, both perturbations pro-

duce the same temperature dependences of the spin profiles.
On the other hand, the lattice profiles are different. The lat-
tice ↑-↑ -↓ transition occurs at 45 K �thick light-blue lines in
Fig. 10�b��, while it occurs at 40 K in the Jc

L perturbation.
Experiments under the electric field or high pressures may
detect these changes.

The last perturbation changes the spin-lattice coupling pa-
rameter. We set �=0.1 and 0.3 while the other parameters
are unchanged from Eq. �11�. Figure 11 shows the results of
the structure factor compared to the neutron experimental
data. The PD transition temperature and the saturation tem-
perature are robust against this perturbation. On the other
hand, the ferrimagnetic transition temperature depends on �,
which is observed by the change in slope of the �111� data.
As we increase �, the ferrimagnetic transition temperature
increases. The spin-lattice coupling relaxes frustration and
stabilizes the ferrimagnetic state.

Comparing the above with the results of the original pa-
rameters �Figs. 5 and 7� we notice that there are several
spin-lattice effects. The ferrimagnetic state appears at higher
temperatures because of the relaxation of frustration. The
�111� structure factor linearly depends on the temperature.
There appears a three-sublattice ↑-↑ -↓ state. These charac-
teristic behaviors in RbCoBr3 are fragile and disappear when
the spin-lattice coupling changes. Control of the lattice sys-
tem by the electric field or the pressure may produce a new
effect to the spin system.

V. DISCUSSION

The successive phase transitions of RbCoBr3 are well ex-
plained by the spin-lattice model introduced in this paper.
Numerical data of our Monte-Carlo simulations quantita-
tively agree with the experimental results. The spin-lattice
coupling is found to be essential in this system. It produces
nontrivial behaviors of RbCoBr3 different from other typical
ABX3 compounds. The present analysis was enabled by the
modified cluster flip algorithm, which eliminates the slow

MC dynamics in the quasi-one-dimensional frustrated spin
system.

The magnetodielectric transition at 37 K is not always
simultaneous. It is a coincidence that the spin transition and
the lattice transition occur at the close temperatures in
RbCoBr3. They may differ if the interaction parameters are
different. The spin transition temperature is possibly deter-
mined independently from the lattice system. The spin-lattice
coupling only determines what type of the spin order is re-
alized below this transition temperature.

On the other hand, the magnetodielectric transition at 31
K is always simultaneous. It is the spin-driven lattice transi-
tion. The lattice symmetry changes in order to realize the
ferrimagnetic state. Therefore, the anomaly of the spontane-
ous polarization observed experimentally10 at 32 K is con-
sidered as an indication of another structural transition,

where the space group changes from P3̄c1 to P3c1. Further
experiments to ensure this theoretical prediction are ex-
pected. An anomaly at 9 K observed experimentally has not
been identified within the present spin-lattice model.

The criticality of the phase transitions is an interesting
future problem. The linear temperature dependence of the
�111� structure factor below 31 K in Fig. 5�a� may be an
indication of the mean-field universality �=1 /2. Although
the interaction range is limited to the second-nearest neigh-
bor, the spin-lattice coupling effectively makes it long range
because of the large correlation lengths of both spin variables
and lattice variables. This mean-field criticality is supported
by a model proposed recently by Miyashita et al.29 Their
model for a magnetic phase transition in spin-crossover ma-
terials is similar to our spin-lattice model. In their model, the
spin takes either a high-spin state or a low-spin state. The
volume of a magnetic ion depends on the spin state, which
produces an effective spin-lattice coupling. They observed
the mean-field universality by the detailed scaling analysis
on the model system. If the mean-field universality appears
in RbCoBr3, it may be observed in other magnetodielectric
compounds, e.g., RFe2O4.30,31

It should be commented that our mean-field-like treatment
of the MC updating may have affected the critical phenom-
enon. This treatment averages the lattice variables along the
chain. It may produce effective long-range spin-spin correla-
tions along the chain.

In the present model, the lattice parameters have not been
determined uniquely. The lattice model is simple, taking only
the elastic energy into account. Our assumption of the spin-
lattice coupling only models the deformation of the lattice
system as an influence to the spin system. Some modifica-
tions to the model may be necessary when we discuss the
magnetic-dielectric cross correlation under an electric field
and a magnetic field.
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